

Nodularin Report *Project: Central Davis Sewer District*

	Leland Myers
Organization:	Central Davis Sewer District
Email:	ljmyers@cdsewer.org
Sample Receipt Date:	19 June 17
Sample Condition:	26.8 °C
Date Prepared:	20 June 17
Prepared by:	Mark Aubel
Report#	170616 – Central Davis Sewer District

Sample Identification	Description/Site	Sample Collection Date
FB1	Great Salt Lake	16 June 17
FB4	Great Salt Lake	16 June 17

Analytes: Nodularin (NOD)

Sample Preparation

Water Sample Ultrasonication

Samples were received and immediately frozen for later preparation. After thawing, the samples were inverted for 60 seconds to mix and sonicated to lyse cells and release of toxins.

Solid Phase Extraction (SPE)

Preconditioned Strata X Polymeric SPE (100 mg) was loaded with 1 mL of sample, rinsed with 5% MeOH and eluted with 90% acetonitrile. Elutions were blown to dryness (N_2 at 60°C) and reconstituted in 5% MeOH/Deionized water (1.0 mL).

Quality Control

Table 1: LFSM/LFSMD QC sample prepared for analysis (unless otherwise noted)

Analyte	Concentration (ng/mL)	Sample ID(s)	Return
NOD	2.0	FB1	114%

Additional Quality Control/Quality Assurance checks included method blanks and a LFB.

Analytical Techniques

NOD

The method described in Foss and Aubel (2015) was modified to accommodate only nodularin. A Certified Reference Standard of NOD (1.0 ng/mL) was used to calibrate the method. Table 2 below shows the transition monitored. A MDL was determined through standard addition (LFSM).

	r	Table 2	
	Precurse	or Ion	Fragment Ions
Analyte	(<i>m</i> /2	z)	(m/z)
NOD	$[M+H]^+$	825.5	135

Summary of Results

Sample ID	NOD (ng/mL)	
FB1	0.62	
FB4	ND	
MDL (ng/ mL)	0.1	
Analyst Initials	МА	
Date Analyzed	6/21/17	

Abbreviations	5:
MDL	Method Detection Limit
MQL	Method Quantification Limit
ND	Not Detected above the MDL
Blank	Regent Water free from interferences
LFB	Lab Fortified Blank
LFSM	Lab Fortified Sample Matrix
LFSMD	Lab Fortified Sample Matrix Duplicate
LD	Lab Duplicate

Submitted by:

Date:

Mark T. Aubel, Ph.D. June 21, 2017

This report shall not be reproduced except in full without written approval of the laboratory

205 Zeagler Drive Suite 302• Palatka, FL 32177info@greenwaterlab.com• greenwaterlab.com